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Abstract.13

Background: Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays an important role in regulating synaptic
activity and plasticity.
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Objective: Given that type-2 diabetes (T2DM) increases the risk of cognitive decline, and studies have suggested lower BDNF
levels may be a risk factor of diabetic neurovascular complications, we sought to investigate total white matter hyperintensities
(WMH) as a moderator of the effect of BDNF on hippocampal volume and cognition.
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Methods: Older adults without dementia from the Alzheimer’s Disease Neuroimaging Initiative (N = 454 including 49
with T2DM and 405 without diabetes) underwent neuropsychological evaluation, magnetic resonance imaging to quantify
hippocampal and WMH volumes, and blood draw to assess BDNF.
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Results: Adjusting for age, sex, and APOE �4 carrier status, there was a significant interaction between total WMH and
BDNF on bilateral hippocampal volume in the non-T2DM group (t = 2.63, p = 0.009). Examination of main effect models
with a dichotomous high/low BNDF group revealed a significant main effect for low BDNF (t = –4.98, p < 0.001), such that
as WMH increased, bilateral hippocampal volume decreased. There was also a significant interaction between total WMH
and BDNF on processing speed in the non-T2DM group (t = 2.91, p = 0.004). There was a significant main effect for low
BDNF (t = –3.55, p < 0.001) such that as WMH increased, processing speed decreased. The interactions were not significant
in the T2DM group.
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Conclusion: These results further elucidate the protective role that BDNF plays on cognition, as well as the cognitive effects
of WMH.
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INTRODUCTION33

Brain-derived neurotrophic factor (BDNF) is a34

neurotrophin that plays an important role in regu-35

lating synaptic activity, neurotransmission, neuronal36

repair, and plasticity in the central nervous system.37

More specifically, BDNF has been linked to learning38

and memory. It helps neuronal maintenance in the39

entorhinal cortex [1] and plays a role in regulating40

long-term potentiation, a type of synaptic plastic-41

ity considered as the cellular correlate of long-term42

memory (LTM) formation [2, 3]. Some studies have43

suggested that BDNF regulation specifically, and not44

that of other neurotrophin factors, is associated with45

LTM formation [4, 5].46

Alzheimer’s disease (AD), the most common form47

of dementia among older adults, often involves48

synaptic and neuronal degeneration of the hippocam-49

pus, and one of the areas where BDNF is expressed50

is the hippocampus nuclei. In older adults with AD,51

BDNF plasma and serum levels have repeatedly been52

shown to be significantly decreased when compared53

with healthy older adults [6] and those with vascular54

dementia [7]. This decrease in BDNF may contribute55

to the pathogenic process of AD through lack of56

trophic support. One meta-analysis found that in AD,57

but not mild cognitive impairment (MCI)—which is58

conceptualized as a transitional stage between normal59

cognition and dementia—BDNF levels are signifi-60

cantly lower, suggesting that peripheral changes are61

more easily detected at later stages in the disease62

[6]. Another found that BDNF levels were signif-63

icantly positively associated with CSF A�42 levels64

and significantly correlated with medial temporal65

lobe atrophy [8]. Higher levels of BDNF were corre-66

lated with lower hippocampal pro-BDNF levels and67

higher hippocampal p-Tau accumulation [9]. Despite68

the significant amount of research on BDNF levels69

in AD and associations with AD pathology, BDNF70

has not been widely studied in individuals without71

dementia, particularly investigating the relationship72

between BDNF levels and cognition.73

One important factor in studying risk for decline74

in older adults without dementia is white matter75

hyperintensities (WMH), a marker for small ves-76

sel cerebrovascular disease. Total WMH have been77

shown to be associated with conversion from nor-78

mal cognition to MCI [10], and one study found that79

autosomal-dominant AD is associated with increased80

WMH several years before symptom onset [11].81

WMH may cause cognitive decline, particularly in82

processing speed [12], and WMH studies on the83

whole suggest that WMH are may contribute to the 84

development of dementia [13]. Although the pre- 85

cise mechanism of the effect of WMH on AD is 86

unknown, regional distribution and volume may play 87

a role [14–16]. WMH are thought to be heterogeneous 88

and have been associated with processes including 89

demyelination, axonal loss due to ischemia or neu- 90

ronal death, microglia and endothelial activation, 91

and cerebral amyloid angiopathy [17]. The relation- 92

ship between BDNF and WMH is not well studied, 93

although one study found that number and volume of 94

deep white matter lesions was positively associated 95

with BDNF levels in patients without dementia [18]. 96

Type 2 diabetes mellitus (T2DM) is a condition that 97

increases the risk of cognitive decline, development 98

of dementia including AD, and cardiovascular dis- 99

ease, a leading cause of death in people with T2DM. 100

T2DM is also associated with deficits in multiple 101

domains of cognitive functioning, including mem- 102

ory and executive functions [19, 20]. It is linked 103

to reduced cerebral blood flow, particularly in brain 104

regions implicated in AD such as the medial temporal 105

lobes [21], as well as cerebrovascular disease. 106

The literature examining the role of BDNF in 107

T2DM is limited but increasing, and several stud- 108

ies have found that the circulating level of BDNF is 109

reduced in individuals with T2DM alone, AD alone, 110

and more reduced in individuals diagnosed with both 111

[22]. Lower BDNF levels have been shown to be cor- 112

related with worse delayed memory in T2DM, and 113

there is evidence that decreased insulin resistance 114

is associated with increased release of BDNF [23]. 115

Several studies also suggest that lower BDNF lev- 116

els may be a risk factor of diabetic neurovascular 117

complications (for review, see [23]). 118

Since T2DM increases the risk of cognitive decline 119

and development of dementia, and several studies 120

have suggested that lower BDNF levels may be a 121

risk factor of diabetic neurovascular complications, 122

we sought to investigate 1) differences in BDNF lev- 123

els between those with and without T2DM, and 2) 124

WMH volume, a marker of small vessel cerebrovas- 125

cular disease, as a moderator on the association of 126

BDNF with both cognition and hippocampal volume 127

in older adults with and without T2DM. 128

MATERIALS AND METHODS 129

ADNI data set 130

Data used in the preparation of this arti- 131

cle were obtained from the Alzheimer’s Disease 132
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Neuroimaging Initiative (ADNI) database (https://133

adni.loni.usc.edu). The ADNI was launched in 2003134

as a public-private partnership, led by Principal Inves-135

tigator Michael W. Weiner, MD. The primary goal136

of ADNI has been to test whether serial magnetic137

resonance imaging (MRI), positron emission tomog-138

raphy (PET), other biological markers, and clinical139

and neuropsychological assessment can be combined140

to measure the progression of MCI and early AD.141

Participants142

All participants included in ADNI were between143

the ages of 55 and 90 years, had completed at144

least 6 years of education, were Spanish or English145

speakers, had Geriatric Depression Scale scores <6146

(possible score range is 0–15) [24], had modified147

Hachinski Ischemic Scale scores <4, and were free148

of any significant neurological disease, major psy-149

chiatric conditions, or systemic illness. ADNI was150

approved by the institutional review boards at par-151

ticipating institutions and written informed consent152

was obtained. Participants were included in this study153

if they were not diagnosed with clinical dementia154

and had BDNF data available at their baseline visit.155

This resulted in 454 participants. Of these, 49 met156

criteria for T2DM and 405 did not (see Table 1 for157

demographics). For an additional post-hoc analysis,158

participants were classified as cognitively unimpaired159

(CU) or MCI according to Jak/Bondi actuarial neu-160

ropsychological MCI criteria [25].161

BDNF measurement162

All plasma based BDNF data were downloaded163

from the ADNI website (https://adni.loni.usc.edu/).164

Detailed methods can be found online165

(https://adni.loni.usc.edu/methods/). Briefly, blood166

samples were collected during baseline visit only,167

in the morning after an overnight fast, centrifuged168

to prepare plasma, and frozen on dry ice. Samples169

underwent an additional freeze–thaw cycle prior to170

quantification of BDNF. BDNF concentration was171

analyzed using the multiplex immunoassay panel,172

which is based on Luminex’s xMAP Technology by173

Rules-Based Medicine (RBM, Austin, TX).174

Diabetes classification175

T2DM classification was determined based on176

the ADNI medical history database [26] or use of177

glucose-lowering medications [27]. Consistent with178

previous work in ADNI [26], the following search 179

terms were used to identify participants with DM 180

at baseline from medical history: diabetes, diabetic, 181

insulin, insulin-dependent diabetes mellitus, and non- 182

insulin dependent diabetes mellitus. Individuals with 183

type 1 diabetes were excluded. 184

Neuropsychological scores 185

Memory recall was measured by the Rey Audi- 186

tory Verbal Learning Test (RAVLT) as the number 187

of words recalled following a 30-min delay. Recog- 188

nition memory was calculated from the RAVLT by 189

subtracting false-positive errors from the number of 190

words correctly recognized. Processing speed was 191

measured by time to complete Trail Making Test A. 192

Each of these measures was converted to a z-score 193

that was adjusted for age, education, and sex based 194

on performance of a sample of cognitively normal 195

ADNI participants who remained cognitively normal 196

throughout their participation in the study (n = 274), 197

consistent with previously published results [28]. 198

Memory was chosen because of its previously dis- 199

cussed association with BDNF and cognitive deficits 200

in early AD. Processing speed was examined because 201

of its sensitivity to WMH and vascular risk. 202

MR image acquisition and analysis 203

A description of ADNI MRI imaging data 204

acquisition and processing is available online 205

(https://www.loni.usc.edu/). All images were 206

acquired on 1.5 T systems with 3D T1-weighted 207

magnetization-prepared rapid gradient echo 208

sequences in sagittal orientation. A proton 209

density/T2-weighted fast spin echo sequence 210

was obtained and used for quantifying white matter 211

hyperintensities. The ADNI protocol was validated 212

across platforms and all imaging sites passed 213

scanner validation tests [29]. Hippocampal and total 214

intracranial volume was derived from FreeSurfer. 215

WMHs were identified on co-registered T1, T2, and 216

PD-weighted images using an automated method 217

that has been previously described [30, 31]. The 218

T1 image was stripped of nonbrain tissues and 219

nonlinearly aligned to a minimum deformation 220

template [32, 33]. The T2- and PD-weighted images 221

were stripped of nonbrain tissues and warped to 222

the space of the minimum deformation template 223

image based on the T1 alignment and warping 224

parameters. WMHs were detected at each voxel 225

based on image intensities of the PD, T1, and T2 226

https://adni.loni.usc.edu
https://adni.loni.usc.edu
https://adni.loni.usc.edu/
https://adni.loni.usc.edu/methods/
https://www.loni.usc.edu/
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Table 1
Participant demographics

T2DM (N = 49) Non-T2DM (N = 405) Between-group
differences

Age 74.85 ± 5.40 74.91 ± 7.41 t = –1.53, p = 0.128,
d = 0.12

Education 15.16 ± 3.07 15.70 ± 2.99 t = –0.97, p = 0.335,
d = 0.08

Sex 38 M; 11 F 248 M; 157 F χ2 = 12.58, p < 0.001,
V = 0.10

Race 86% White, 10% Black,
2% Asian, 2% More than
one race

94% White, 3% Black,
2% Asian

χ2 = 20.18, p = 0.003,
V = 0.12

Cognitive Status 18 CU; 31 MCI 147 CU; 258 MCI χ2 = 2.26, p = 0.133,
V = 0.04

APOE Status 18 APOE �4 carriers; 31
non-carriers

198 APOE �4 carrier; 207
non-carriers

χ2 = 0.074, p = 0.785, V
V = –0.007

Pulse Pressure 61.21 ± 14.81 59.65 ± 13.81 t = 1.31, p = 0.191,
d = 0.11

Welch two-sample t-tests were used for evaluating differences in age, education, and pulse pressure between
the T2DM and non-T2DM groups. Chi-square tests were used to evaluate differences in sex, race, cognitive
status, and APOE �4 carrier status between T2DM and non-T2DM groups. “V” indicates Cramer’s V. “d”
indicates Cohen’s d.

images, combined with a spatial prior (the prior227

probability of WMHs occurring at a given voxel) as228

well as a contextual prior (the conditional probability229

of WMHs occurring at a given voxel based on the230

presence of WMHs at neighboring voxels). A more231

detailed description of this has been previously232

reported [34].233

Statistical analyses234

Prior to analyses, data were examined for vio-235

lations of assumptions of the statistical procedures236

employed. Age, sex, education, and APOE �4 sta-237

tus (dichotomous carrier versus noncarrier) were238

entered into all models as covariates, and educa-239

tion was added when the dependent variable was240

cognition. Both hippocampal volume and WMH vol-241

ume were divided by total intracranial volume to242

account for head size. WMH volume (normalized243

by total intracranial volume) was log transformed244

to normalize their non-normal distributions. Cogni-245

tive measures were Box-cox transformed to improve246

normality of their distributions, and outliers were247

removed from BDNF and hippocampal volume vari-248

ables using the interquartile range method.249

We first used linear regression to examine asso-250

ciations between BDNF level and covariates across251

the entire sample (collapsing those with and without252

T2DM). Analyses adjusted for age, sex, APOE �4253

status, and diabetes status, but did not control for the254

covariate when it was the outcome variable.255

Differences in BDNF level between those with 256

and without T2DM were identified using ANCOVA. 257

We examined the interaction between total WMH 258

and BDNF by examining the interaction between 259

these two variables on 1) bilateral hippocampal vol- 260

ume and 2) cognition (i.e., memory and processing 261

speed), within each group (T2DM and non-T2DM). 262

When the interaction term was significant, we exam- 263

ined main effects within the T2DM and non-T2DM 264

groups. For each interaction, the relevant variables 265

were entered into a regression analysis with corre- 266

sponding dependent variable and covariates. When 267

examining main effects, BDNF was dichotomized by 268

median split. In a posthoc analysis, we additionally 269

controlled for use of metformin, since it decreases 270

glucose production by increasing the insulin sensi- 271

tivity of body tissues, and one of the mechanisms 272

described for BDNF is interfering with insulin resis- 273

tance. All results remained the same when controlling 274

for metformin. 275

RESULTS 276

BDNF and covariates 277

Across the entire sample, BDNF level was sig- 278

nificantly associated with age, such that as age 279

increased, BDNF decreased (t = –2.11, p = 0.035). 280

BDNF was also significantly associated with sex 281

(t = 3.54, p < 0.001) such that females had signifi- 282

cantly higher BDNF levels than males (M = 0.36, 283
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SD = 0.33 versus M = 0.23, SD = 0.38; p < 0.001).284

BDNF level was not associated with APOE status285

(t = 0.11, p = 0.909).286

BDNF levels between T2DM groups287

ANCOVA models adjusting for age, sex, and288

APOE �4 carrier status revealed that older adults with289

T2DM did not show reduced BDNF levels relative290

to those without T2DM (M = 0.17, SD = 0.40 versus291

M = 0.28, SD = 0.39; F = 2.73, p = 0.099).292

Interaction between total WMH and BDNF on293

bilateral hippocampal volume294

Adjusting for age, sex, and APOE �4 carrier sta-295

tus, there was a significant interaction between total296

WMH and BDNF on bilateral hippocampal volume297

in the non-T2DM group (t = 2.63, p = 0.009; Fig. 1).298

Examination of main effect models with a dichoto-299

mous high/low BNDF group revealed a significant300

main effect for low BDNF (t = –4.98, p < 0.001), such301

that as WMH increased, bilateral hippocampal vol-302

ume decreased. The main effect was not significant303

in the high BDNF group (t = –0.33, p = 0.745). This304

same interaction was not significant in the T2DM305

group (t = –0.86, p = 0.399).306

Interaction between total WMH and BDNF on307

cognition308

Adjusting for age, sex, APOE �4 carrier status, and309

education, there was a significant interaction between310

total WMH and BDNF on processing speed in the311

non-T2DM group (t = 2.91, p = 0.004; Fig. 1). There312

was a significant main effect for low BDNF (t = –3.55,313

p < 0.001) such that as WMH increased, processing314

speed decreased. The main effect was not signifi-315

cant in the high BDNF group (t = 0.13, p = 0.901).316

This interaction was not significant in the T2DM317

group when examining processing speed (t = –1.06,318

p = 0.297), recall (t = –0.78, p = 0.440), or recogni-319

tion (t = 0.24, p = 0.813). This interaction was also not320

significant in the non-T2DM group when examining321

recall (t = –0.24, p = 0.813) or recognition (t = –0.80,322

p = 0.427).323

DISCUSSION324

Our results demonstrate that BDNF level plays325

a role in the associations between WMH and both326

hippocampal volume and cognition in those with-327

out T2DM. In our sample, older adults with T2DM 328

did not show differences in BDNF levels relative to 329

those without T2DM, after adjusting for demograph- 330

ics and dementia risk factors including age, sex, and 331

APOE �4 carrier status. There were significant inter- 332

actions between total WMH volume and BDNF on 333

hippocampal volume in the non-T2DM group, such 334

that for those with low BDNF, as WMH increased, 335

bilateral hippocampal volume decreased. There was 336

also a significant interaction between total WMH 337

and BDNF on processing speed in the non-T2DM 338

group, such that for those with low BDNF, as WMH 339

increased, processing speed decreased. These inter- 340

actions were not significant in the T2DM group. 341

Our finding that those with T2DM had similar lev- 342

els of BDNF compared to those without T2DM does 343

not align with literature noting reduced BDNF levels 344

in individuals with T2DM [22, 35, 36]. Importantly, 345

one meta-analysis found that lower levels of BDNF 346

were found in T2DM patients only when they had 347

cognitive impairment [37]. We excluded for demen- 348

tia, offering another possible explanation for these 349

findings. Additionally, our sample had relatively low 350

vascular risk compared to the general T2DM pop- 351

ulation because the study excluded for participants 352

with a modified Hachinski Ischemic Scale scores >4. 353

However, in a post-hoc analysis additionally con- 354

trolling for cognitive status (CU versus MCI), the 355

T2DM group had significantly lower BDNF levels 356

(p = 0.047). Although everyone in the sample did not 357

have a diagnosis of dementia, this indicates a poten- 358

tial effect of subtle cognitive changes on BDNF. One 359

of the main sources of BDNF is platelets, which 360

help regulate glucose metabolism. Low levels of 361

BDNF have been associated with impaired glucose 362

metabolism, and its cerebral output specifically has 363

been shown to be negatively regulated by high plasma 364

glucose levels [35, 38]. In people with T2DM, lower 365

levels of BDNF were associated with obesity and dia- 366

betes complications [38]. Importantly, BDNF levels 367

can be increased behaviorally, via exercise, which 368

increases upregulation of BDNF as well as insulin 369

sensitivity. Increased exercise has been linked to 370

increases in BDNF levels, both in healthy controls 371

and individuals with T2DM [39–41]. 372

We also observed an interaction between total 373

WMH and BDNF on both bilateral hippocampal vol- 374

ume and processing speed in individuals without 375

T2DM. For both interactions, there were significant 376

associations in those with low BDNF, where WMH 377

were negatively associated with hippocampal volume 378

and processing speed. The link between BDNF and 379
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Fig. 1. Interactions between WMH volume and BDNF on hippocampal volume (left) and processing speed (right) among older adults without
diabetes. Y-axes reflect model-predicted hippocampal volume and processing speed, respectively. X-axes reflect total WMHs. Hippocampal
volume was normalized by intracranial volume.

vascular risk is not yet fully understood. However,380

plasma BDNF levels have been associated with risk381

factors for cardiovascular disease, including blood382

pressure, triglycerides, total cholesterol, and BMI383

[42]. Several studies have additionally suggested that384

lower BDNF levels may be a risk factor of diabetic385

neurovascular complications [23]. More recently, as386

part of the Framingham Study, high serum BDNF387

levels were associated with lower levels of WHM388

in individuals free from stroke or transient ischemic389

attack, and after 10-year follow-up, lower serum390

BDNF was associated with increased risk of inci-391

dent stroke and transient ischemic attack, suggesting392

that BDNF levels may modify the risk of clinical and393

subclinical cerebrovascular disease [43]. However,394

studies examining the relationship between either395

serum or plasma BDNF and WMH in individuals with396

T2DM are scarce; more research is needed in this area397

and the precise mechanism by which BDNF affects398

vascular risk is unknown. It is important to note that399

we did not find these interactions between BDNF and400

WMH on cognition or hippocampal volume in the401

T2DM group. One possible explanation for this could402

be a small sample in this group (N = 49) compared403

to the non-T2DM group (N = 405). Another possi-404

bility is that quantifying BDNF levels using plasma405

may not be an optimal strategy for evaluating neu-406

rovascular complications in individuals with T2DM.407

Furthermore, although the volume of WMH in those408

with T2DM is often associated with processing speed409

and attention [44, 45], other research has not found410

these associations, including a 3-year longitudinal411

study [46, 47].412

There are several limitations to our study worth413

noting. First, BDNF levels collected in ADNI are414

quantified in plasma, but recent literature has shown415

higher reliability of measurement in serum [48, 49].416

Also, our sample of individuals with T2DM who had 417

BDNF data collected was small (n = 49), suggesting 418

that these findings be considered preliminary. More- 419

over, this sample size precluded us from conducting 420

analyses stratified by cognitive diagnosis within par- 421

ticipants with T2DM, however, all participants did 422

not have dementia. All participants had modified 423

Hachinski Ischemic Scale scores <4, indicating that 424

they had relatively low vascular risk, likely lower 425

than most individuals with T2DM. This may have 426

contributed to our finding that those with and with- 427

out T2DM had similar BDNF levels. Despite these 428

limitations, our analyses add novel findings to the 429

field. 430

Conclusions 431

The current study examined associations between 432

BDNF, and WMH on hippocampal volume and 433

cognition in individuals with and without T2DM. 434

Analyses revealed that those with T2DM had sim- 435

ilar levels of BDNF as those without T2DM. We 436

also observed that the association between WMH and 437

both processing speed and bilateral hippocampal vol- 438

ume depends on BDNF level in individuals without 439

T2DM. These results further elucidate the protective 440

role that BDNF plays on cognitive decline in this pop- 441

ulation. This is suggested by the interaction between 442

WMH and BDNF on processing speed, where, 443

as BDNF level increases, the relationship between 444

WMH and processing speed increases. To our knowl- 445

edge, this is the first study to examine WMH and 446

BDNF levels in non-demented individuals with and 447

without T2DM. It contributes additional specificity, 448

particularly in the associations between BDNF and 449

specific cognitive domains. Future work may exam- 450

ine additional neurotrophins, such as insulin-like 451
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growth factor-1, which has also been shown to play452

a protective role in AD [50]. Future research should453

also investigate these relationships in individuals with454

AD with and without T2DM.455
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